Фундаментальные исследования. Т

Лекция 11.Характеристика жидкого состояния вещества. Поверхностный слой жидкости. Энергия поверхностного слоя. Явления на границе жидкости с твердым телом. Капиллярные явления.

ХАРАКТЕРИСТИКА ЖИДКОГО СОСТОЯНИЯ ВЕЩЕСТВА

Жидкость - это агрегатное состояние вещества, промежуточное между газообразным и твердым.

Вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда, в котором оно находится Сохранение объема у жидкости доказывает, что между ее молекулами действуют силы притяжения.

Если вокруг молекулы жидкости описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих других молекул, которые будут взаимодействовать с нашей молекулой. Эти силы взаимодействия удерживают молекулу жидкости около ее временного положения равновесия примерно в течение 10 -12 -10 -10 с, после чего она перескакивает в новое временное положение равновесия приблизительно на расстояние своего диаметра. Молекулы жидкости между перескоками совершают колебательное движение около временного положения равновесия.

Время между двумя перескоками молекулы из одного положения в другое называется временем оседлой жизни.

Это время зависит от вида жидкости и от температуры. При нагревании жидкости среднее время оседлой жизни молекул уменьшается.

Итак, в небольшом объеме жидкости наблюдается упорядоченное расположение ее молекул, а в большом объеме оно оказывается хаотическим. В этом смысле говорят, что в жидкости существует ближний порядок в расположении молекул и отсутствует дальний порядок. Такое строение жидкости называют квазикристаллическим (кристаллоподобным).

СВОЙСТВА ЖИДКОСТИ

1.Если время действия силы на жидкость мало, то жидкость проявляет упругие свойства. Например, при резком ударе палкой о поверхность воды палка может вылететь из руки или сломаться; камень можно бросить так, что он при ударе о по­верхность воды отскакивает от нее, и лишь совершив несколько скачков, тонет в воде.

2. Если же время воздействия на жидкость велико, то вместо упругости проявляется текучесть жидкости. Например, рука легко проникает внутрь воды.

3. При кратковременном действии силы на струю жидкости последняя обнаруживает хрупкость. Прочность жидкости нд разрыв хотя и меньше, чем у твердых веществ, но мало уступает им по величине. Для воды она составляет 2,5-10 7 Н/м 2 .

4.Сжимаемость жидкости тоже очень мала, хотя она и больше, чем у этих же веществ в твердом состоянии. Например, при увеличении давления на 1 атм объем воды уменьшается на 50 миллионных долей.

Разрывы внутри жидкости, в которой нет посторонних веществ, например воздуха, могут получаться только при интенсивном воздействии на жидкость, например при вращении гребных винтов в воде, при распространении в жидкости ультразвуковых волн. Такого рода пустоты внутри жидкости долго существовать не могут и резко захлопываются, т. е. исчезают. Это явление называют кавитацией (от греческого «кавитас» – полость). Оно служит причиной быстрого износа гребных винтов.


ПОВЕРХНОСТНЫЙ СЛОЙ ЖИДКОСТИ

Среднее значение равнодействующей молекулярных сил притя­жения, приложенных к молекуле, которая находится внутри жидкости (рис. 2), близко к нулю. Случайные флуктуации этой равнодействующей заставляют молекулу совершать лишь хаотическое движение внутри жидкости. Несколько иначе обстоит дело с молекулами, находящимися в поверхностном слое жидкости.

Опишем вокруг молекул сферы молекулярного действия радиусом R(порядка 10 -8 м). Тогда для верхней молекулы в нижней полусфере окажется много молекул, а в верхней – значительно меньше, так как снизу находится жидкость, а сверху – пар и воздух. Поэтому для верхней молекулы равнодействующая молекулярных сил притяжения в нижней полусфере много больше равнодействующей молекулярных сил в верхней полусфере.

Таким образом, все молекулы жидкости, находящиеся в поверхностном слое толщиной, равной радиусу молекулярного действия, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость, которое называют молекулярным давлением.

Силы, действующие в горизонтальной плоскости, стягивают поверхность жидкости. Они называются силами поверхностного натяжения

Поверхностное натяжение - физическая величина, равная отношению силы F поверхностного натяжения, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине l этой границы:


Единица поверхностного натяжения – ньютон на метр (Н/м).

Поверхностное натяжение различно для разных жидкостей и зависит от температуры.

Обычно поверхностное натяжение уменьшается с возрастанием температуры и при критической температуре, когда плотность жидкости и пара одинаковы, поверхностное натяжение жидкости равно нулю.

Вещества, которые уменьшают поверхностное натяжение, называют поврхностно – активными (спирт, мыло, стиральный порошок)

Чтобы увеличить площадь поверхности жидкости требуется выполнить работу против поверхностного натяжения.

Имеется другое определение коэффициента поверхностного натяжения - энергетическое. Оно исходит из того, что если площадь поверхности жидкости увеличивается, то некоторое количество молекул из ее объема поднимается на слой поверхности. С этой целью внешние силы совершают работу против молекулярных сил сцепления молекул. Величина данной работы будет пропорциональна изменению площади поверхности жидкости:

Коэффициент пропорциональности σ и называется поверхностным натяжением жидкости.

Выведем единицу поверхностного, натяжения а в СИ: о=1 Дж/1 м 2 = 1 Дж/м 2 .

Наиболее характерным свойством жидкости, отличающим ее от газа, является то, что на границе с газом жидкость образует свободную поверхность, наличие которой приводит к возникновению явлений особого рода, называемых поверхностными. Своим возникновением они обязаны особым физическим условиям, в которых находятся молекулы вблизи свободной поверхности.

На каждую молекулу жидкости действуют силы притяжения со стороны окружающих ее молекул, расположенных от нее на расстоянии порядка м (радиус молекулярного действия). На молекулу , расположенную внутри жидкости (рис. 1), действуют силы со стороны таких же молекул, и равнодействующая этих сил близка к нулю.

Для молекул равнодействующие сил отличны от нуля и направлены внутрь жидкости, перпендикулярно к ее поверхности. Таким образом, все молекулы жидкости, находящиеся в поверхностном слое, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость (молекулярное давление ).

Чтобы переместить молекулу , расположенную непосредственно под поверхностным слоем, на поверхность, необходимо совершить работу против сил молекулярного давления. Следовательно, молекулы поверхностного слоя жидкости обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эту энергию называют поверхностной энергией .

Очевидно, что величина поверхностной энергии тем больше, чем больше площадь свободной поверхности.

Пусть площадь свободной поверхности изменилась на , при этом поверхностная энергия изменилась на , где a - коэффициент поверхностного натяжения.

Так как для этого изменения необходимо совершить работу

Единицей коэффициента поверхностного натяжения в СИ является джоуль на квадратный метр .

Коэффициент поверхностного натяжения - величина, численно равная работе, совершенной молекулярными силами при изменении площади свободной поверхности жидкости на единицу при изотермическом процессе.

Так как любая система, предоставленная сама себе, стремится занять такое положение, в котором ее потенциальная энергия наименьшая, то жидкость обнаруживает стремление к сокращению свободной поверхности.

Поверхностный слой жидкости ведет себя подобно растянутой резиновой пленке, т.е. все время стремится сократить площадь своей поверхности до минимальных размеров, возможных при данном объеме.

Пример: капля жидкости в состоянии невесомости имеет сферическую форму.

Суммарная энергия частиц жидкости складывается из энергии их хаотического (теплового) движения и потенциальной энергии, обусловленной силами межмолекуляр­ного взаимодействия. Для перемещения молекулы из глубины жидкости в поверхност­ный слой надо затратить работу. Эта работа совершается за счет кинетической энергии молекул и идет на увеличение их потенциальной энергии. Поэтому молекулы поверхностного слоя жидкости обладают большей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная энергия, которой обладают молекулы в поверхностном слое жидкости, называемая поверхностной энергией, пропорциональна площади слоя DS :

где s - поверхностное натяжение.

Так как равновесное состояние характеризуется минимумом потенциальной энер­гии, то жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объеме она имела минимальную поверхность, т. е. форму шара. Наблю­дая мельчайшие капельки, взвешенные в воздухе, можем видеть, что они действительно имеют форму шариков, но несколько искаженную из-за действия сил земного тяготения.

Итак, условием устойчивого равновесия жидкости является минимум поверхност­ной энергии. Это означает, что жидкость при заданном объеме должна иметь наимень­шую площадь поверхности, т. е. жидкость стремится сократить площадь свободной поверхности. В этом случае поверхностный слой жидкости можно уподобить растяну­той упругой пленке, в которой действуют силы натяжения.

Под действием сил поверхностного натяжения (направлены по касательной к поверх­ности жидкости и перпендикулярно участку контура, на который они действуют) поверхность жидкости сократилась и рассматриваемый контур переместился в положение, отмеченное светло-серым цветом. Силы, действующие со стороны выделенного участка на граничащие с ним участки, совершают работу

где f - сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости.

Из рис. 97 видно, что DlDx = DS , т. е.

Эта работа совершается за счет уменьшения поверхностной энергии, т. е.

Из сравнения выражений (66.1) - (66.3) видно, что

т. е. поверхностное натяжение s равно силе поверхностного натяжения, приходящейся на единицу длины контура, ограничивающего поверхность. Единица поверхностного натяжения - ньютон на метр (Н/м) или джоуль на квадратный метр (Дж/м 2) (см. (66.4) и (бб.1)). Большинство жидкостей при температуре 300 К имеет поверхностное натяжение порядка 10 –2 -10 –1 Н/м. Поверхностное натяжение с повышением тем­пературы уменьшается, так как увеличиваются средние расстояния между молекулами жидкости.

Поверхностное натяжение существенным образом зависит от примесей, имеющихся в жидкостях. Вещества, ослабляющие поверхностное натяжение жидкости, называются пoвеpxностно-активными . Наиболее известным поверхностно-активным веществом по отношению х воде является мыло. Оно сильно уменьшает ее поверхностное натяжение (примерно с 7,5 10 –2 до 4,5 10 –2 Н/м). Поверхностно-активными веществами, пони­жающими поверхностное натяжение воды, являются также спирты, эфиры, нефть и др.

Существуют вещества (сахар, соль), которые увеличивают поверхностное натяжение жидкости благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой. Например, если посолить мыльный раствор, то в поверхностный слой жидкости выталкивается молекул мыла больше, чем в пресной воде.

На поверхности жидкости, вблизи границы, разделяющей жидкость и ее пар, взаимодействие между молекулами жидкости отличается от взаимодействия молекул внутри объема жидкости. Для иллюстрации этого утверждения рассмотрим рис. 20 .

Рис. 20. Взаимодействие между молекулами внутри и на поверхности жидкости

Молекула 1, окруженная со всех сторон другими молекулами той же жидкости испытывает в среднем одинаковые притяжения ко всем своим соседям. Равнодействующая этих сил близка к нулю. Молекула 2 испытывает меньшее притяжение вверх со стороны молекул пара и большее притяжение вниз со стороны молекул жидкости. В результате на молекулы, расположенные в поверхностном слое действует направленная вниз равнодействующая R сил, которую принято относить к единице площади поверхностного слоя.

Для перенесения молекул из глубины жидкости в ее поверхностный слой необходимо совершить работу по преодолению силы R . Эта работа идет на увеличение поверхностной энергии, т.е. избыточной потенциальной энергии, которой обладают молекулы в поверхностном слое по сравнению с их потенциальной энергией внутри остального объема жидкости.

Обозначим W s потенциальную энергию одной молекулы в поверхностном слое, W v - потенциальную энергию молекулы в объеме жидкости, N – число молекул в поверхностном слое жидкости. Тогда поверхностная энергия равна:

W пов =(W s -W v)·N (75)

Коэффициентом поверхностного натяжения (или просто поверхностным натяжением) жидкости называют изменение поверхностной энергии при изотермическом увеличении площади поверхности на одну единицу:

σ=ΔW пов /ΔS=(N/S)·(W s -W v)=n·(W s -W v) (76)

Где n – число молекул на единице площади поверхности жидкости.

Если поверхность жидкости ограничена периметром смачивания, то коэффициент поверхностного натяжения численно равен силе, действующей на единицу длины периметра смачивания и направленной перпендикулярно к этому периметру:

Где l – длина периметра смачивания, F – сила поверхностного натяжения, действующая на длине l периметра смачивания. Сила поверхностного натяжения лежит в плоскости, касательной к поверхности жидкости.

Сокращение площади поверхности жидкости уменьшает поверхностную энергию. Условием устойчивого равновесия жидкости, как и любого тела, является минимум потенциальной поверхностной энергии. Это значит, что в отсутствие внешних сил жидкость должна иметь при заданном объеме наименьшую площадь поверхности. Такой поверхностью является сферическая поверхность.

С повышением температуры жидкости и приближением ее к критической коэффициент поверхностного натяжения стремится к нулю. Вдали от T кр коэффициент σ линейно убывает при возрастании температуры. Для уменьшения поверхностного натяжения жидкости к ней добавляют специальные примеси (поверхностно-активные вещества), которые располагаются на поверхности и уменьшают поверхностную энергию. К ним относятся мыло и другие моющие средства, жирные кислоты и т.п.

Молекулы в жидкости обладают кинетической энергией теплового движения и потенциальной энергией межмолекулярного взаимодействия. Для перемещения молекулы из глубины жидкости к поверхности надо совершить работу по преодолению силы молекулярного давления. Эта работа совершается молекулой за счет запаса кинетической энергии и идет на увеличение ее потенциальной энергии. Поэтому молекулы поверхностного слоя обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эта дополнительная потенциальная энергия, которой обладают молекулы поверхностного слоя, называется поверхностной энергией .

Если поверхность жидкости растянуть, то на поверхность будут выходить все новые молекулы, и потенциальная энергия поверхностного слоя будет увеличиваться. Следовательно, поверхностная энергия пропорциональна площади самой поверхности жидкости (рис.4).

где А – работа силы поверхностного натяжения; F – сила поверхностного натяжения; Dx – растяжение пленки; DS – изменение площади поверхности пленки.

Из этого выражения можно дать еще одно определение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения равен свободной поверхностной энергии, приходящейся на единицу площади поверхности. В этом случае единица измерения [a]=[Дж/м 2 ].

Большое влияние на поверхностное натяжение оказывают находящиеся в жидкости примеси. Например, мыло, растворенное в воде, уменьшает коэффициент поверхностного натяжения до 0,045 Н/м, а сахар или соль повышают. Изменяющие поверхностное натяжение вещества называют поверхностно – активными . К ним можно отнести нефть, мыло, спирт.. Это явление объясняется межмолекулярным взаимодействием между молекулами. Если взаимодействие между молекулами самой жидкости больше, чем между молекулами жидкости и примеси, то молекулы примеси выталкиваются на поверхность и концентрация примеси на поверхности оказывается больше; чем в объеме, что и приводит к уменьшению поверхностного натяжения.

Поверхностно–активные вещества широко применяют при резке металлов, бурении горных пород, и т.д., так как разрушение горных пород в их присутствии происходит легче, адсорбируясь на поверхности твердого тела, они проникают внутрь микротрещин и способствуют дальнейшему развитию этих трещин вглубь.