Двигатель на воде. Как сделать двигатель, работающий на воде

Многие владельцы машин ищут способы экономии топлива. Кардинально решить этот вопрос позволит водородный генератор для автомобиля. Отзывы тех, кто установил себе это устройство, позволяют говорить о существенном снижении затрат при эксплуатации транспорта. Так что тема достаточно интересная. Ниже пойдёт речь о том, как сделать водородный генератор собственными силами.

ДВС на водородном топливе

На протяжении нескольких десятилетий идут поиски возможности приспособить двигатели внутреннего сгорания для полной или гибридной работы на водородном топливе. В Великобритании ещё в 1841 году был запатентован двигатель, работающий на воздушно-водородной смеси. Концерн «Цеппелин» в начале ХХ века в качестве движущей установки своих знаменитых дирижаблей использовал двигатели внутреннего сгорания, работающие на водороде.

Развитию водородной энергетики способствовал и мировой энергетический кризис, разразившийся в 70 годах прошлого века. Однако с его окончанием водородные генераторы быстро были забыты. И это несмотря на массу преимуществ по сравнению с обычным топливом:

  • идеальная воспламеняемость топливной смеси на основе воздуха и водорода, что даёт возможность лёгкого пуска двигателя при любой температуре окружающей среды;
  • большое выделение тепла при сгорании газа;
  • абсолютная экологическая безопасность - отработавшие газы превращаются в воду;
  • выше в 4 раза скорость сгорания по сравнению с бензиновой смесью;
  • способность смеси работать без детонации при высокой степени сжатия.

Основной технической причиной, являющейся непреодолимой преградой в использовании водорода в качестве топлива автомобилей стала невозможность уместить достаточное количество газа на транспортном средстве. Размер топливного бака для водорода будет сравним с параметрами самого автомобиля. Большая взрывоопасность газа должна исключать возможность малейшей утечки. В жидком виде необходима криогенная установка. Этот способ также мало осуществим на автомобиле.

Газ Брауна

Сегодня водородные генераторы у автолюбителей приобретают популярность. Однако это не совсем то, о чем шла речь выше. Путём электролиза вода превращается в так называемый газ Брауна, который и добавляют к топливной смеси. Основная задача, которую решает этот газ, - полное сгорание топлива. Это и служит увеличением мощности и снижением расхода топлива на приличный процент. Некоторым механикам удалось добиться экономии на 40 %.

Решающее значение в количественном выходе газа имеет площадь поверхности электродов. Под действием электрического тока молекула воды начинает разлагаться на два атома водорода и один кислорода. Такая газовая смесь при сгорании выделяет почти в 4 раза больше энергии, чем при сгорании молекулярного водорода. Поэтому использование этого газа в двигателях внутреннего сгорания приводит к более эффективному сгоранию топливной смеси, уменьшает количество вредных выбросов в атмосферу, увеличивает мощность и уменьшает величину затраченного топлива.

Универсальная схема водородного генератора

Тем, у кого нет способностей к конструированию, водородный генератор для автомобиля можно купить у народных умельцев, поставивших на поток сборку и установку таких систем. Сегодня есть множество таких предложений. Стоимость агрегата и установки составляет порядка 40 тысяч рублей.

Но можно собрать такую систему и самостоятельно - сложного в ней нет ничего. Состоит она из нескольких простых элементов, соединённых в одно целое:

  1. Установки для электролиза воды.
  2. Накопительного резервуара.
  3. Улавливателя влаги из газа.
  4. Электронного блока управления (модулятора тока).

Ниже приведена схема, по которой можно легко собрать водородный генератор своими руками. Чертежи главной установки, производящей газ Брауна, достаточно просты и понятны.

Схема не представляет какой-либо инженерной сложности, повторить её может каждый, кто умеет работать с инструментом. Для автомобилей с инжекторной системой подачи топлива необходимо еще установить контроллер, регулирующий уровень подачи газа в топливную смесь и связанный с бортовым компьютером автомобиля.

Реактор

От площади электродов и их материала зависит количество получаемого объёма газа Брауна. Если в качестве электродов брать медные или железные пластины, то реактор не сможет работать продолжительное время по причине быстрого разрушения пластин.

Идеальным выглядит применение титановых листов. Однако их использование повышает затраты на сборку агрегата в несколько раз. Оптимальным считается применение пластин из высоколегированной нержавеющей стали. Металл этот доступен, его не составит труда приобрести. Также можно использовать отработавший своё бак от стиральной машины. Сложность составит только вырезание пластин нужного размера.

Типы установок

На сегодняшний день водородный генератор для автомобиля может быть укомплектован тремя различными по типу, характеру работы и производительности электролизёрами:


Первый тип конструкции вполне достаточен для множества карбюраторных двигателей. Отсутствует необходимость в установке сложной электронной схемы регулятора производительности газа, да и сама сборка такого электролизёра не представляет сложности.

Для более мощных автомобилей предпочтительна сборка второго типа реактора. А для двигателей, работающих на дизельном топливе, и большегрузных машин используют третий тип реактора.

Необходимая производительность

Для того чтобы можно было действительно экономить топливо, водородный генератор для автомобиля должен ежеминутно вырабатывать газ из расчёта 1 литр на 1000 рабочего объёма двигателя. Исходя из этих требований подбирается количество пластин для реактора.

Для увеличения поверхности электродов необходимо провести обработку поверхности наждачной бумагой в перпендикулярном направлении. Такая обработка крайне важна - она увеличит рабочую площадь и позволит избежать «прилипания» пузырьков газа к поверхности.

Последнее приводит к изоляции электрода от жидкости и препятствует нормальному электролизу. Не стоит также забывать, что для нормальной работы электролизёра вода должна быть щелочной. Катализатором может служить обычная сода.

Регулятор тока

Водородный генератор на авто в процессе работы увеличивает свою производительность. Это связано с выделением тепла при реакции электролиза. Рабочая жидкость реактора испытывает нагрев, и процесс протекает гораздо интенсивнее. Для контроля над течением реакции используют регулятор тока.

Если не понижать его, может произойти просто закипание воды, и реактор перестанет выдавать газ Брауна. Специальный контролер, регулирующий работу реактора, позволяет изменять производительность с увеличением оборотов.

Карбюраторные модели оборудуют контроллером с обычным переключателем двух режимов работы: "Трасса" и "Город".

Безопасность установки

Многие умельцы размещают пластины в пластиковых ёмкостях. Не стоит экономить на этом. Нужен бак из нержавеющего металла. Если его нет, можно использовать конструкцию с пластинами открытого типа. В последнем случае необходимо применять качественный изолятор тока и воды для надёжной работы реактора.

Известно, что температура горения водорода составляет 2800. Это самый взрывоопасный газ в природе. Газ Брауна - не что иное, как «гремучая» смесь водорода. Поэтому водородные генераторы на автомобильном транспорте требуют качественной сборки всех узлов системы и наличия датчиков для слежения за течением процесса.

Датчик температуры рабочей жидкости, давления и амперметр не будут лишними в конструкции установки. Особое внимание стоит уделить гидрозатвору на выходе из реактора. Он жизненно необходим. Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор.

Водородный генератор для отопления жилых и производственных помещений, работающий на тех же принципах, отличается в несколько раз большей производительностью реактора. В таких установках отсутствие гидрозатвора представляет смертельную опасность. Водородные генераторы на автомобилях в целях обеспечения безопасной и надёжной работы системы также рекомендуется оборудовать таким обратным клапаном.

Пока без обычного топлива не обойтись

В мире есть несколько экспериментальных моделей, которые полностью работают на газе Брауна. Однако технические решения пока ещё не достигли своего совершенства. Простым жителям планеты такие системы недоступны. Поэтому пока автолюбителям остаётся довольствоваться «кустарными» разработками, которые дают возможность сократить затраты на топливо.

Немного о доверчивости и наивности

Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.

Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.

Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.

Умельцев собирать всевозможные механизмы из подручных средств в нашей стране всегда хватало. Подтверждением этих слов выступают советские журналы большим тиражом (не будем вспоминать названия), передачи наподобие «Очумелые ручки», книги «Сделай сам», и многочисленные видео в интернете. В этой статье разберем двигатель на воде.

Определения

Все устройства, которые созданы для превращения энергии в механическую работу, называются двигателями.

Двигатель на воде - определение размытое. Под ним можно подразумевать:

  • винтовые двигатели лодочных типов (может использовать двигатель внутреннего сгорания на воде, паровой и другие);
  • двигатели на реактивной тяге (гидроциклы, БТР и опять-таки подлодки);
  • генератор, превращающий энергию воды в механическую работу (двигатель, который работает на воде);
  • паровой двигатель (двигатель, работающий на воде, из-за простоты строения рассмотрен в деталях не будет).

Паровой двигатель устроен подобным образом: в котел заправляется горючее, в цилиндре закипает вода, увесистый поршень сверху под давлением поднимается до тех пор, пока не откроется клапан цилиндра. За счет поршня приходит в движение механизм.

О винтовых двигателях

В водном транспорте преимущественно используется следующий принцип: к двигателю (паровому, электрическому, дизельному, бензиновому и, с меньшей вероятностью, газовому) присоединяют винт определенных параметров.

О двигателях на реактивной тяге

По устройству - воду пропускают через себя за счет винтов (у ракет немного другой принцип). Особенность заключается в направленной струе, за счет которой объект приходит в движение. Для наглядного представления стоит вспомнить принцип работы водяного насоса. Преимуществами подобной системы является эффективность работы при высоких оборотах и относительная бесшумность.

О водных генераторах

Если встанет вопрос «как сделать двигатель на воде?», то за счет вращения винта можно привести в движение ротор. Он, в свою очередь, вызывает в катушках проводника магнитную индукцию. Она вызывает переменный ток. Ток или напрямую приводит в движение объект, или накапливает заряд в батарее. С батареи уже идет распределение на нужды.

Принцип сборки

Разберем примерную структуру цепи, использующей электрогенератор, и прицепим к нему двигатель на реактивной тяге. Это наглядно покажет, как работает определенный элемент. Цепь будет состоять из следующих компонентов: вращающиеся лопасти для генератора переменного тока, преобразователя переменного тока в постоянный, аккумулятора, совместимого электродвигателя, системы реактивной тяги.

Для обеспечения работоспособности генератора необходимо хотя бы примерно представлять скорость вращения ротора. Отталкиваясь от скорости вращения, получаем представление о мощности, которую должен вырабатывать генератор.

Электрический асинхронный генератор переменного тока состоит из статора (неподвижной части) и ротора (вращающейся). Статор состоит из блока наложенных друг на друга листов металла диэлектрика (не проводящих ток) с вырезанными сквозными пазами, и магнитных катушек, вставляющихся в них. Катушки не должны соприкасаться с блоком. Для этого используются специальные прокладки внутри, и стрелки снаружи из изолирующего материала. За пределы пазов они выступать не должны. Также изолируются катушки друг от друга. Форма и элементы ротора могут отличаться друг от друга.

Возьмем за основу двигатели на воде своими руками с расчетом на три фазы, так как данный вид наиболее распространен. Это значит, что будет использовано три катушки одинаковых размеров. В домашних условиях при напряжении в 220 вольт постоянного тока в 19 ампер, потребуется провод с сечением 1,5 миллиметра. Работать будет при условии потребления не выше 4,1 киловатта. Стоит также учесть частоту вращения. Количество вращений в секунду измеряется в герцах. В России принята чистота 50 Герц в секунду для электроники. Провода на выходе соединяются «треугольником» или «звездой».

О физике

Ватт представляет произведение ампер на вольт. Киловатт - это 1000 ватт. Вольт равен произведению Ампер (сила тока) на Ом (сопротивление). Добавляя витки, вы увеличите мощность генератора, но и необходимую требуемую работу при вращении ротора. В данном случае рекомендуется отталкиваться от требований аккумулятора на потребление, а не на отдачу.

Разумеется, возможно сделать расчеты будущего изделия, но в целях безопасности рекомендуется поэкспериментировать с малой мощностью ручного генератора, так как без опыта с первого раза собрать полностью рабочую модель не получится. Причиной этого могут служить мелкие недочеты, неподходящие материалы и прочее, а следствием нарушения техники безопасности - чья-то жизнь. Используйте для начала аккумулятор на 12 вольт и проволоку меньшего диаметра. В качестве ротора - простой ферромагнитный сердечник (железный цилиндр подойдет). Для начала можно сделать авто двигатель на воде для какой-нибудь машинки.

С генератора переменного тока потребуется сделать цепь из трансформатора (высокого напряжения в низкое), 4 диода прямоугольником (одностороннее движение), конденсатор (для бесперебойности), резистор и стабилитрон (ограничение по верхней и нижней планке) и последним регулятор. Вся цепь подключается к накопительной батарее. От батареи непосредственно двигатель под винт. Двигатель можно аналогичный изготовить.

С двигателя для реактивного движения делается вытяжка из проводов (с гидроизоляцией) или бобина. Удлинение размещается у нижнего основания лодки. Винт прикрепляется к нему. Форма винта, углы и количество лепестков по усмотрению.

В маленьком размере получится лодка с ручной подзарядкой и соплом, что обеспечит высокую скорость. Если масштаб увеличить, то при правильном подходе получится мощный двигатель на воде, а главное, появятся навыки.

На заметку

  • В обязательном порядке используйте амперметр.
  • Сила тока зависит от потребления и варьируется в зависимости от него.
  • Проводники должны быть покрыты изоляцией и не повреждены.
  • Для вставки проводников в пазы может использоваться специальный инструмент или резиновый молоток.
  • К открытым элементам нельзя прикасаться до тех пор, пока они работают.
  • После выключения двигателя в нем остается остаточный заряд, стоит дождаться пока излишек выйдет или снять его с помощью дополнительного прибора.
  • Для удобства следует подключить разрыватели цепи, чтобы легко можно было отключать двигатель на воде.
  • Возможно, стоит подумать о системе охлаждения ;
  • Важным элементом может стать реле для контроля напряжения и устройство защитного отключения.

С экранов телевизоров нам заявляют, что количество нефти стремительно уменьшается, и вскоре бензиновые машины отойдут в далёкое прошлое. Вот только это не совсем верно.

Действительно, количество разведанных запасов нефти не очень велико. В зависимости от степени потребления их может хватить на период от 50 до 200 лет. Но в этой статистике не учитываются до сих пор неразведанные места нефтедобычи.

В действительности нефти на нашей планете более чем достаточно. Другой вопрос, что сложность её добычи постоянно возрастает, а значит, растёт и цена. К тому же нельзя списывать со счетов экологический фактор. Выхлопные газы сильно загрязняют среду и с этим нужно что-то делать.

Современная наука создала множество альтернативных источников энергии вплоть до двигателя ядерного распада в ваших машинах. Но большинство из этих технологий пока что представляют собой концепты без возможности реального применения. По крайней мере, так было до недавнего времени.

С каждым годом машиностроительные компании выпускают всё больше машин, работающих на альтернативных источниках питания. Одним из самых эффективных решений в данном контексте является водородный двигатель от бренда «Тойота». Он позволяет полностью забыть про бензин, делая автомобиль экологичным и дешёвым транспортом.

Водородные двигатели

Типы водородных двигателей и их описание

Наука непрерывно развивается. Каждый день придумываются новые концепты. Но только лучшие из них воплощаются в жизнь. Сейчас существует всего два типа водородных двигателей, которые могут быть рентабельными и производительными.

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

На данный момент тяжело сказать, какая из двух технологий по созданию водородных двигателей победит. У каждой есть свои плюсы и минусы. В любом случае работы в данном направлении не прекращаются. Поэтому, вполне возможно, что к 2030 году машину с водородным двигателем можно будет купить в любом автосалоне.

Принцип работы

Водородный двигатель работает на основе принципа электролиза. Данный процесс происходит в воде под воздействием специального катализатора. В результате выделяется гидроген. Его химическая формула следующая — ННО. Газ не обладает взрывоопасными качествами.

Важно! Внутри специальных ёмкостей газ смешивается с топливно-воздушной смесью.

В состав генератора входит электролизер и резервуар. За процесс генерации газа отвечает модулятор тока. Для обеспечения наилучших результатов в инжекторных водородных двигателях устанавливается оптимизатор. Это устройство отвечает за регулирование соотношения топливно-воздушной смеси и газа Брауна.

Характеристики катализаторов

Катализаторы, используемые для создания нужной реакции в водородном двигателе, могут быть трёх видов:

  1. Цилиндрические банки. Это самая простая конструкция, работающая на довольно примитивной системе управления. Производительность водородного двигателя, работающего с данным катализатором, не превышает 0,7 литра газа в минуту. Такие системы могут использоваться на машинах с водородным двигателем объёмом до полутора литра. Увеличение числа банок позволяет превысить данный лимит.
  2. Раздельные ячейки. Считается, что именно такой тип катализатора является наиболее эффективным. Производительность системы составляет более двух литров газа в минуту, КПД — максимальный.
  3. Открытые пластины или сухой катализатор. Данная система рассчитана на длительный срок работы. Производительность колеблется в диапазоне от одного до двух литров газа в минуту. Открытое расположение обеспечивает максимально эффективное охлаждение.

Эффективность водородных двигателей с каждым годом растёт. Сейчас начинают вводиться в эксплуатации гибридные устройства, функционирующие на водороде и бензине. В свою очередь, конструкторы не прекращают искать наиболее эффективной модели катализатора, обеспечивающей ещё большую производительность.

Водородный двигатель своими руками

Генератор

Чтобы создать эффективный водородный двигатель для автомобиля своими руками, нужно начать с генератора. Самый простой самодельный генератор — это герметичная ёмкость с жидкостью, в которую погружаются электроды. Для такого устройства достаточно источника питания в 12 В.

Штуцер устанавливается на крышке конструкции. Он отводит смесь водорода с кислородом. Собственно, это и есть основа генератора для водородного двигателя, которая подключается к ДВС.

Чтобы создать полноценную систему также понадобится дополнительный накопитель и аккумулятор. В качестве корпуса лучше всего использовать водопроводный фильтр или же можно купить специальную установку. В последней применяются цилиндрические электроды повышенной производительности.

Как видите, выделить нужный газ для реакции не так-то уж и сложно. Намного сложнее произвести его в нужном для водородного двигателя количестве. Чтоб повысить эффективность необходимо использовать электроды из меди. В крайнем случае подойдёт и нержавейка.

В ходе реакции ток должен подаваться с разной силой. Поэтому без электронного блока не обойтись. К тому же в резервуаре всегда должно быть определённое количество воды, чтобы реакция проходила в нормальных условиях. Система автоматической подпитки в водородном двигателе решает эту проблему. Интенсивность электролиза обеспечивает достаточное количество соли.

Важно! Если вода дистиллированная, электролиза не будет вовсе.

Чтобы сделать воду для водородного двигателя необходимо взять 10 литров жидкости и добавить столовую ложку гидроксида.

Устройство водородного двигателя

В первую очередь нужно позаботиться о дополнительных резервуарах и трубопроводе. Водородный двигатель нуждается в датчике уровня воды, который устанавливается в середине крышки. Это предотвратит ложное срабатывание при движении вверх-вниз. Именно он будет давать команду системе автоматической подпитки, когда это понадобится.

Особую роль играет датчик давления. Он включается на показателе в 40 psi. Как только внутреннее давление достигнет показателя в 45 psi, подкачка отключается. При превышении 50 psi сработает предохранитель.

Предохранитель водородного двигателя должен состоять из двух частей: вентиля аварийного сброса и разрывного диска. Разрывной диск активируется, когда давление достигает 60 psi, не нанося никакого вреда системе.

Для отвода тепла нужно использовать самую холодную свечу. Не подходят свечи с платиновыми наконечниками. Платина — отличный катализатор для реакции водорода и кислорода.

Важно! Уделите особое внимание созданию вентиляции картера водородного двигателя.

Электрическая часть

Важную роль в электрической схеме водородного двигателя играет таймер 555. Он выполняет роль импульсного генератора. Мало того, с его помощью можно регулировать частоту и ширину импульса.

Важно! Таймер имеет три частотных диапазона. Сопротивление резисторов в пределах 100 Ом. Подключение происходит параллельно.

В плате водородного двигателя должно быть два импульсных таймера 555. При этом первый должен иметь конденсаторы большей ёмкости. Выход с ноги 3 поступает на второй генератор. Он его собственно и включает.

Третий выход второго таймера импульсного водородного генератора подключается к резисторам на 220 и 820 Ом. Транзистор усиливает ток до нужной величины. За его защиту отвечает диод 1N4007. Это обеспечивает нормальную работу всей системы.

Итоги

Сейчас водородный двигатель уже не плод фантазии учёных, а вполне реальная разработка, которую можно сделать самостоятельно. Конечно, по характеристикам подобный агрегат будет уступать заводской модели. Но экономия для ДВС всё равно будет заметной.

Водородные двигатели не просто помогают сократить потребление бензина, но и являются полностью безопасными для окружающей среды. Именно поэтому уже в первом квартале продажи водородного автомобиля марки «Тойота» побили все рекорды в Японии.

Мировые запасы воды на Земле неисчерпаемы. Мы лихорадочно ищем топливо будущего, а сами буквально купаемся в нем. Ведь чтобы пользоваться водой как топливом, надо придумать некое устройство, работающее на ней, а вернее, на ее составляющих водороде и кислороде. Из основ химии известны методы диссоциации (способы разложения) воды на водород и кислород – термическая, электрическая, под действием ионизирующих излучений, радиоволн и др.

Среди автомобилистов давно ходят рассказы о двигателях внутреннего сгорания, работающих на воде. В научно-популярной литературе периодически появляются сенсационные сообщения об успешных опытах по созданию двигателей на воде. Однако, проверить их достоверность очень трудно. Например, профессор Сапогин рассказывал, как его учитель профессор Г. В. Дудко в 1951 г. участвовал в испытаниях двигателя внутреннего сгорания, который представлял собой гибрид дизеля с карбюраторным двигателем. Для его запуска требовался всего стакан бензина, а потом зажигание отключалось, форсунками в камеры сгорания подавалась топливным насосом обыкновенная вода со специальными добавками, предварительно нагретая и сильно сжатая. Двигатель был установлен на лодке, и испытатели два дня плавали на ней по Азовскому морю, черпая вместо бензина воду из-за борта.

На вопрос, почему такие двигатели до сих пор не поставлены на серийное производство, профессор Сапогин обычно ответил журналисту: "Такой вопрос может прийти в голову только человеку, не знающему жизнь!"

Наверно, в этих рассказах есть какая-то доля истины. Также понятно, что странам международной бензиновой олигархии, как США и России такие изобретения не нужны, поэтому они неохотно пускают такого рода изобретения не только в промышленность, но и на страницы патентных бюллетней. Им, объединенным в автомобильно-бензиновый комплекс, сейчас легко бороться с разрозненными энтузиастами двигателей на воде еще и потому, что у последних нет четкого представления о том, как из воды рождается тепло, необходимое для работы двигателя. Свои разработки они делали методом проб вслепую без освещения пути к цели теорией.

На X Международном симпозиуме "Перестройка естествознания", состоявшемся в 1999 в г. Волгодонске, П. Мачукас из Вильнюса докладывал, что он разработал вещество, таблетка которого на ведро воды превращает воду в заменитель бензина для обычных двигателей. Себестоимость таблетки в 3 раза ниже, чем стоимость бензина на такую же продолжительность поездки. Состав таблетки изобретатель держит в секрете.

Покопавшись в подшивках научно-популярных журналов и газет, можно найти немало подобных околонаучных историй. Так, в газете "Комсомольская правда" от 20 мая 1995 г. приведена история А. Г. Бакаева из Перми, приставка которого якобы позволяет любому автомобилю работать на воде.

Однако, что двигатели на воде - прерогатива только изобретателей из стран СНГ. Например, некто Ю. Браун в США построил демонстрационный автомобиль, в бак которого заливается вода, а Р. Гуннерман в ФРГ доработал обычный двигатель внутреннего сгорания для работы на смеси газ/вода или спирт/ вода в пропорции 55/45. Дж. Грубер также пишет и о двигателе немецкого изобретателя Г. Пошля, работающем на смеси вода/ бензин в пропорции 9/1.

Но самый широкоизвестный двигатель, разлагающий воду на водород и кислород, основанный на электролизе, сконструирован американским изобретателем Стенли Мейром. Доктор Дж. Грубер из ФРГ упоминает о двигателе С. Мейера с водой в роли топлива, запатентованном в США в 1992 г. (Патент США № 5149507). Об этом двигателе была телепередача по 4-му каналу Лондонского телевидения 17 декабря 1995 г.

Обычный элекролиз воды требует тока, измеряемого в амперах, в то время как электролитический двигатель С. Мейера производит тот же эффект при милиамперах. Более того, обыкновенная водопроводная вода требует добавления электролита, например, серной кислоты, для увеличения проводимости; двигатель Мэйера-же действует при огромной производительности с обычной отфильтрованной от грязи водой.

Согласно очевидцам, самым поразительным аспектом двигателя Мэйера было то, что он оставался холодным даже после часов производства газа.

Эксперименты Мэйера, которые он представил к патентованию, заслужили серию патентов США, представленные под Секцией 101. Следует отметить, что представление патента под этой секцией зависит от успешной демонстрации изобретения Патентному Рецензионному Комитету.

Рис. Электролитическая ячейка С. Мейера.

Электролитическая ячейка Мэйера имеет много общего с электролитической ячейкой, за исключением того, что она работает при высоком потенциале и низком токе лучше, чем другие методы. Конструкция проста. Электроды сделаны из параллельных пластин нержавеющей стали, образующие либо плоскую, либо концентрическую конструкцию. Выход газа зависит обратно пропорционально расстоянию между ними; предлагаемое патентом расстояние 1.5 мм дает хороший результат.

Значительные отличия заключаются в питании двигателя. Мэйер использовал внешнюю индуктивность, которая образует колебательный контур с емкостью ячейки, - чистая вода обладает диэлектрической проницаемостью около 5 ед., - чтобы создать параллельную резонансную схему.

Она возбуждается мощным импульсным генератором, который вместе с емкостью ячейки и выпрямительным диодом составляет схему накачки. Высокая частота импульсов производит ступенчато увеличивающийся потенциал на электродах ячейки до тех пор, пока не достигается точка, где молекула воды распадается и возникает кратковременный импульс тока. Схема измерения тока питания выявляет этот скачок и запирает источник импульсов на несколько циклов, позволяя воде восстановиться.

Рис. Электрическая схема электролитической ячейки С. Мейера

Группа очевидцев независимых научных наблюдателей Великобритании свидетельствовал,а что американский изобретатель, Стэнли Мэйер, успешно разлагает обыкновенную водопроводную воду на составляющие элементы посредством комбинации высоковольтных импульсов, при среднем потреблении тока, измеряемого всего лишь милиамперами. Зафиксированный выход газа был достаточным, чтобы показать водородно-кислородное пламя, которое мгновенно плавило сталь(около 0.5 литров в секунду).

Рис. Принципиальная схема электролитической ячейки С. Мейера

По сравнению с обычным сильноточным электролизом, очевидцы констатировали отсутствие какого-либо нагревания ячейки. Мэйер отказался прокомменировать подробности, которые бы позволили ученым воспроизвести и оценить его "водяную ячейку". Однако, он представил достаточно детальное описание американскому Патентному Бюро, чтобы убедить их, что он может обосновать его заявку на изобретение.

Одна демонстрационная ячейка была снабжена двумя параллельными электродами возбуждения. После наполнения водопроводной водой, электроды генерировали газ при очень низких уровнях тока - не больше, чем десятые доли ампера, и даже миллиамперы, как заявляет Мэйер, - выход газа увеличивался, когда электроды сдвигались более близко, и уменьшался, когда они отодвигались. Потенциал в импульсе достигал десятков тысяч вольт.

Вторая ячейка содержала 9 ячеек с двойными трубками из нержавеющей стали и производила намного больше газа. Была сделана серия фотографий, показывающая производство газа при миллиамперном уровне. Когда напряжение было доведено до предельного, газ выходил в очень впечатляющем количестве.

Исследователь химик Keith Hindley описал демонстрацию работы ячейки Мэйера: "После дня презентаций, Griffin комитет засвидетельствовал ряд важных свойств WFC (водяная топливная ячейка, как назвал ее изобретатель). "Мы обратили внимание, что вода вверху ячейки медленно стала окрашиваться от бледно-кремового до темно-коричневого цвета, мы почти уверены в влиянии хлора в сильно хлорированной водопроводной воде на трубки из нержавеющей стали, использованные для возбуждения. Но самое удивительное наблюдение - это то, что WFC и все его металлические трубки остались совершенно холодные на ощупь, даже после более чем 20 минут работы “.

Рис. Механизм работы электролитической ячейки С. Мейера

Таким образом, полученный результат свидетельствует об эффективном и управляемом производстве газа, которое безопасно в управлении и функционировании. А управлять производством газа позволяет увеличение и уменьшение напряжения электрода.

По мнению самого изобретателя, под воздействием электрического поля происходит поляризации молекулы воды, приводящему к разрыву связи.

Кроме обильного выделения кислорода и водорода и минимального нагревания ячейки, очевидцы также сообщают, что вода в внутри ячейки исчезает быстро, переходя в ее составные части в виде аэрозоли из огромного количества крошечных пузырьков, покрывающих поверхность ячейки.

Мэйер заявил, что конвертер водородно-кислородной смеси работает у него уже в течение последних 4 лет, и состоит из цепочки из 6 цилиндрических ячеек. Он также заявил, что фотонное стимулирование пространства реактора светом лазера посредством оптоволокна увеличивает производство газа.

Рис. Изменения молекул воды при работе установки

Эффекты, наблюдаемые при работе установки электролитического разложения воды:

-последовательность состояний молекулы воды и/или водорода/кислорода/других атомов;

-ориентация молекул воды вдоль силовых линий поля;

-поляризация молекулы воды;

-удлиннение молекулы воды;

-разрыв ковалентной связи в молекуле воды;

-освобождение газов из установки.

Причём, оптимальный выход газа достигается в резонансной схеме. Частота подбирается равной резонансной частоте молекул.

Для изготовления пластин конденсатора отдается предпочтение нержавеющей стали марки Т-304, которая не взаимодействует с водой, кислородом и водородом. Начавшийся выход газа управляется уменьшением эксплуатационных параметров. Поскольку резонансная частота фиксирована, производительностью можно управлять с помощью изменения импульсного напряжения, формы или количества импульсов.

Повышающая катушка намотана на обычном тороидальном ферритовом сердечнике 1.50 дюйма в диаметре и 0.25 дюйма толщиной. Первичная катушка содержит 200 витков 24 калибра, вторичная 600 витков 36 калибра.
Диод типа 1ISI1198 служит для выпрямления переменного напряжения. На первичную обмотку подаются импульсы скважности 2. Трансформатор обеспечивает повышение напряжения в 5 раз, хотя оптимальный коэффициент подбирается практическим путем.

Дроссель содержит 100 витков калибра 24, в диаметре 1 дюйм. В последовательности импульсов должен быть короткий перерыв.

Через идеальный конденсатор ток не течет. Рассматривая воду как идеальный конденсатор, энергия не будет расходоваться на нагрев воды.

Вода обладает некоторой остаточной проводимостью, обусловленной наличием примесей. Идеально, если вода в ячейке будет химически чистой. Электролит к воде не добавляется.

В процессе электрического резонанса может быть достигнут любой уровень потенциала, поскольку емкость зависит от диэлектрической проницаемости воды и размеров конденсатора.

Однако, следует помнить, что водород – чрезвычайно опасное взрывоопасное соединение. Его детонационная составляющая в 1000 раз сильнее бензина. Помимо всего, у Стэна Мэйера было два инфаркта, после которых он скончался, возможно, от отравления водородом.

Другой, совершенно отличный по конструкции двигатель внутреннего сгорания, работающей на воде, был разработан ещё в 1994 году нашим изобретателем В.С. Кащеевым.

На рисунке справа приведена его конструкция в разрезе.

Двигатель внутреннего сгорания на воде, разработанный изобретателем В.С. Кащеевым

Двигателя внутреннего сгорания на воде включает цилиндр 1, в котором размещен поршень 2, связанный, например, кривошипно-шатунным механизмом с коленчатым валом двигателя (на фиг. 1 не показаны). Цилиндр 1 снабжен головкой 3, образующей совместно со стенками цилиндра 1 и днищем поршня 2 камеру сгорания 4. Подпоршневая полость 5 сообщена с атмосферой. В головке 3 цилиндра установлены:

впускной клапан 6, сообщающий камеру сгорания 4 с атмосферой при движении поршня 2 от верхней мертвой точки к нижней и приводимый, например, от распределительного вала двигателя (на фиг. не показан);

обратные клапаны 7, обеспечивающие выхлоп в атмосферу продуктов из камеры сгорания 4 и герметизирующие камеру после осуществления выхлопа.

Камера сгорания 4 выполнена по крайней мере с одной предкамерой 8, в которой установлен приводимый, например, от распределительного вала клапан 9 подачи топливной смеси и свеча зажигания 10. Предпочтительно предкамеру 8 (или предкамеры) выполнить в боковой стенке цилиндра 1 над поршнем при его расположении в нижней мертвой точке.

Двигатель работает следующим образом:

При движении поршня 2 от верхней мертвой точки к нижней впускной клапан 6 открыт и камера сгорания 4 сообщена с атмосферой. Давление, действующее на обе стороны поршня 2, одинаково и равно атмосферному.

При приближении поршня 2 к нижней мертвой точке герметизируют камеру сгорания 4, закрывая впускной клапан 6; через клапаны 9 в предкамеры 8 подают топливную смесь и воспламеняют ее. В качестве топливной смеси используют стехиометрическую смесь водорода с кислородом, так называемый гремучий газ.

При сгорании топливной смеси резко повышается давление в камере сгорания 4; этим давлением открываются установленные в головке 3 цилиндра обратные клапаны 7 и происходит выхлоп в атмосферу продуктов из камеры сгорания. Давление в камере сгорания 4 резко понижается и обратные клапаны 7 закрываются, герметизируя камеру сгорания 4.

Поршень 2 атмосферным давлением, действующим со стороны подпоршневой полости 5, перемещается от нижней мертвой точки к верхней, совершая рабочий ход.

По достижении поршнем 2 верхней мертвой точки открывается впускной клапан 6 и цикл повторяется. Выбрасываемые из камеры сгорания продукты представляют собой увлажненный воздух.

Получение топливной смеси для силовой установки транспортного средства с предлагаемым двигателем внутреннего сгорания может осуществляться электролизом воды в электролизере, установленном на этом транспортном средстве.

Другой наш изобретатель москвич Михаил Весенгириев, лауреат премии журнала «Изобретатель и рационализатор», вообще предложил использовать в качестве устройства, разлагающего воду на кислород и водород самый что ни на есть обычный поршневой двигатель внутреннего сгорания (ДВС). Он утверждает, что существующие двигатели внутреннего сгорания можно заставить работать на обычной воде с помощью электродов вольтовой дуги.

Камера двигателя сгорания по-мнению изобретателя, идеально подходит для всех видов воздействия на воду, вызывающих ее диссоциацию и последующее образование рабочей смеси, ее воспламенение и утилизацию выделившейся энергии.

Для этого изобретатель М. Весенгириев предложил использовать четырехтактный ДВС (положительное решение по заявке на патент РФ № 2004111492). Он содержит один цилиндр с жидкостной системой охлаждения, поршень и головку цилиндра, образующие камеру сгорания, выпускной клапан, систему подачи электролита (водного раствора электролита) и систему зажигания. Система подачи электролита в цилиндр выполнена в виде плунжерного насоса высокого давления и форсунки с кавитатором (местное сужение канала). Причем насос высокого давления либо кинематически, либо через блок управления связан с кривошипно-шатунным механизмом двигателя.

Система зажигания выполнена в виде электродов и вольтовой дуги, установленных в камере сгорания. Зазор между ними можно регулировать, а ток на них идет от прерывателя-распределителя, также кинематически или через блок управления связанного с кривошипно-шатунным механизмом.

Перед пуском двигателя в работу бак заправляют электролитом (например, водным раствором едкого натра). Регулируя катод, устанавливают зазор между электродами. И, включив зажигание, на электроды подают постоянный ток. Затем стартером раскручивают вал двигателя.

Поршень от верхней мертвой точки (ВМТ) перемещается к нижней мертвой точке (НМТ). Выпускной клапан закрыт. В цилиндре создается разрежение. Насос высокого давления забирает из электролитного бака цикловую дозу электролита и через форсунку с кавитатором подает ее в цилиндр. В кавитаторе за счет повышения скорости и падения давления до критического значения происходит частичная диссоциация воды и тончайшее распыление капелек электролита. Затем в камере сгорания за счет протекания постоянного электрического тока через электролит происходит дополнительная, уже электролитическая диссоциация.

Поршень от НМТ перемещается к ВМТ – такт сжатия. Объем, занимаемый рабочей смесью, уменьшается, а ее температура возрастает: теперь идет уже термическая диссоциация. Третий такт – рабочий ход. Электрод пружиной и кулачково?распределительным валом (кинематически либо через блок управления связанный с кривошипно-шатунным механизмом) перемещается до соприкосновения с электродом, и зажигается вольтова дуга. Под воздействием ее тепла рабочая смесь в камере сгорания окончательно диссоциирует и воспламеняется. Расширяющиеся газы перемещают поршень от ВМТ к НМТ. Еще до прихода поршня к НМТ прерыватель-распределитель размыкает контакты, на короткое время прерывает подачу постоянного тока на электроды вольтовой дуги и тушит ее. Затем контакты прерывателя-распределителя вновь замыкаются, и постоянный ток опять поступает на электроды.

И, наконец, четвертый такт – выпуск. Поршень перемещается вверх от НМТ к ВМТ. Выпускной клапан открывает выпускное окно, и цилиндр освобождается от отработавших продуктов. В дальнейшем процесс работы двигателя беспрерывно повторяется. При этом цилиндр и головка цилиндра охлаждаются системой охлаждения двигателя. Таким образом, старый-новый ДВС может работать на воде.

Конструкции двигателей внутреннего сгорания на воде, реализуются на практике различными западными фирмами.

Например, совсем недавно Японская компания Genepax представила в Осаке (Osaka, Япония) электромобиль, который использует воду в качестве топлива. Как сообщает агентство Reuters, всего одного литра достаточно, чтобы ехать на нем в течение часа со скоростью 80 километров в час.

Как утверждает разработчик, машина может использовать воду любого качества – дождевую, речную и даже морскую. Силовая установка на топливных ячейках получила название Water Energy System (WES). Она устроена по тому же принципу, что и другие силовые установки на топливных элементах, использующие водород в качестве топлива. Главной особенностью системы Genepax является то, что она использует коллектор электродов мембранного типа (MEA), который состоит из специального материала, способного при помощи химической реакции полностью расщепить воду на водород и кислород.

Этот процесс, как утверждают разработчики, аналогичен механизму производства водорода путем реакции металлогидрида и воды. Однако главное отличие WES – это получение водорода из воды в течение длительного времени. Кроме того, MEA не требует специального катализатора, а редкие металлы, в частности платина, необходимы в том же количестве, что и в обычных фильтрующих системах бензиновых автомобилей. Также нет необходимости использовать преобразователь водорода и водородный резервуар высокого давления.

Помимо полного отсутствия вредных выбросов, силовая установка Genepax, по словам разработчика, является более долговечной, так как катализатор не портится от загрязняющих веществ.

"Автомобиль будет продолжать ехать до тех пор, пока у вас есть бутылка с водой, чтобы заправлять его время от времени", - сказал генеральный директор Genepax Киеси Хирасава (Kiyoshi Hirasawa). «Для пополнения энергией батарей не требуется создавать инфраструктуру, в частности, станции подзарядки, как для большинства современных электромобилей».

Продемонстрированный в Осаке автомобиль является единственным образцом, и будет использован для получения патента на изобретение. В будущем Genepax планирует начать сотрудничать с японскими автопроизводителями и снизить себестоимость топливных элементов за счет массового производства.

О.В.Мосин

Продолжение - в следующей статье сайта.

Уникальное изобретение

Сегодня люди все больше внимания обращают на экологию, а именно, на На этот фактор непосредственно влияет человеческая деятельность, а также ее детища. К примеру, автомобили. Представители этого вида транспорта выбрасывают в атмосферу просто невероятное количество выхлопов каждый день. Эти вредные вещества очень сильно влияют на состояние а также планеты в целом. В мире каждую минуту становится все больше автомобилей, соответственно, и выбросов тоже. Поэтому, если сейчас не остановить данное загрязнение, завтра может быть уже поздно. Понимая это, японские разработчики занялись производством экологического двигателя, который бы не влиял на состояние окружающей среды столь пагубным способом. И вот, компания Genepax представила миру детище современного экологически чистого производства - двигатель внутреннего сгорания на воде.

Преимущества двигателя на воде

Состояние окружающей среды, а также дефицит бензина заставил разработчиков задуматься над просто невоображаемой концепцией - созданием двигателя на воде. Сама мысль уже ставила под сомнение успех данного проекта, но ученые из Японии не привыкли сдаваться без боя. Сегодня они с гордостью демонстрируют принцип работы данного двигателя, который можно заправлять речной или морской водой. «Это просто удивительно! - твердят в один голос эксперты со всего мира, - который можно заправлять обычной водой, при этом вредные равны нулю». По словам японских разработчиков, всего 1 литра воды хватит на то, чтобы ехать на скорости 90 км/ч целый час. При этом очень важной деталью является то, что двигатель можно заправлять водой абсолютно любого качества: автомобиль будет ехать до тех пор, пока у вас будет емкость с водой. Также, благодаря двс на воде, не нужно будет строить масштабных станций для подзарядки батарей, которые находятся в автомобиле.

Принцип работы нового устройства

Двигатель на воде назвали Water Energy System. Особенных отличий данная система от водородной не имеет. Двигатель на воде построен точно по такому же принципу, как и его собратья, которые в качестве топлива используют водород. Как же разработчикам удалось из воды получить топливо? Дело в том, что японские ученые изобрели новую технологию, которая основана на расщеплении воды на кислород и водород с помощью специального коллектора с электродами мембранного типа. Материал, из которого состоит коллектор, вступает в химическую реакцию с водой и расщепляет ее молекулу на атомы, тем самым обеспечивая двигатель топливом. Всех подробностей технологии расщепления нам узнать не удалось, т.к. разработчики еще не успели получить патент на свое изобретение. Но сегодня уже смело можно говорить о том, что этот двигатель на воде способен произвести настоящий переворот в мире автомобилестроения. Помимо того, что данный агрегат полностью экологичен, он еще и долговечен! Уникальная технология использования воды делает аппарат практически неубиваемым.

Прогнозы на будущее

Уже в скором времени будет изобретен новый автомобиль с двс на воде в городе Осака. Это будет сделано для того, чтобы разработчики смогли запатентовать свое изобретение. По предварительным оценкам, учёные говорят, что сборка такого прибора на сегодняшний момент обходится в 18 тысяч долларов, но вскоре за счет массового производства цену удастся снизать в 4 раза, то есть до 4 тысяч долларов за один двигатель на воде.

Это просто потрясающее изобретение, которое призвано спасти наш мир от:

  1. Бензинового кризиса.
  2. Глобального потепления из-за загрязнения атмосферы

Надеемся, что вскоре двигатель поступит в массовое производство, и все больше автомобильных заводов будут использовать его в своих моделях.